Chapter 1 Chemical Measurements

- 1-1 SI Units
- 1-2 Chemical Concentrations
- **1-3 Preparing Solutions**
- 1-4 Stoichiometry Calculations for Gravimetric Analysis

SI Units

SI base units include the following:

- meter (m)
- kilogram (kg)
- second (s)
- ampere (A)
- kelvin (K)
- mole (mol)

Derived SI Units

Other quantities can be derived in terms of base SI units. See Table 1-2.

- force (newton, N), Kg·m / s^2
- pressure (pascal, Pa), N / m²
- energy (joule, J), N·m

Prefixes

TABLE 1-3 Prefixes									
Prefix	Symbol	Factor		Prefix	Symbol	Factor			
yotta Y		10 ²⁴ deci			d	10^{-1}			
zetta Z		10 ²¹ centi			с	10^{-2}			
exa E		10 ¹⁸ milli			m	10^{-3}			
peta P		10 ¹⁵ micro			μ10	-6			
tera T		10 ¹² nano			n	10^{-9}			
giga G		10 ⁹ pico			р	10^{-12}			
mega M		10 ⁶ femto	f		_	10^{-15}			
kilo k		10 ³ atto			а	10^{-18}			
hecto h		10 ² zepto			Z	10^{-21}			
deca da		10 ¹ yocto			У	10^{-24}			

Table 1.3 Memorize these prefixes with their abbreviations and powers of ten.

Using Prefixes in Calculations

- In calculations, units should be carried along with the numbers.
- Prefixes such as kilo- and milli- are used to denote multiples of units.
- Prefixes can be used to simplify conversions between units.

Example:

Express 19.3 mPa in terms of atm 19.3 mPa can be written as 19.3×10^{-3} Pa

$$19.3 \times 10^{-3} \text{ Pa} \times \frac{1.00 \text{ atm}}{101325 \text{ Pa}} = 1.90 \times 10^{-7} \text{ atm}$$

Concentrations

- Molarity (moles of solute per liter of solution), M
- Molality (moles of solute per kilogram of solvent), m
- Formal concentration (formula units per liter), F
- Percent composition (w/w, v/v or w/v), %
- Parts per million, ppm
- Parts per billion, ppb

% Composition (w/w or v/v)

Weight percent = $\frac{\text{mass of solute}}{\text{mass of total solution or mixture}} \times 100$

$$Volume \ percent = \frac{volume \ of \ solute}{volume \ of \ total \ solution} \times 100$$

95% (w/w) ethanol contains 95 g of ethanol for every 100 g of solution.

$$ppm = \frac{mass \text{ of substance}}{mass \text{ of sample}} \times 10^{6}$$

$$ppb = \frac{mass of substance}{mass of sample} \times 10^9$$

- Shortcut: ppm is also mg/L or µg/mL if the density of the solution is 1.0 g/mL.
- An aqueous solution that is 1 000 ppm in Cu contains 1 000 mg Cu per liter of solution.
- It also contains 1000 µg per mL of solution.

EXAMPLE Converting Parts per Billion into Molarity

Normal alkanes are hydrocarbons with the formula C_nH_{2n+2} . Plants selectively synthesize alkanes with an odd number of carbon atoms. The concentration of $C_{29}H_{60}$ in summer rainwater collected in Hannover, Germany, is 34 ppb. Find the molarity of $C_{29}H_{60}$ and express the answer with a prefix from Table 1-3.

Solution A concentration of 34 ppb means there are 34 ng of $C_{29}H_{60}$ per gram of rainwater, which is nearly the same as 34 ng/mL because the density of rainwater is close to 1.00 g/mL. To find the molarity, we need to know how many grams of $C_{29}H_{60}$ are contained in a liter. Multiplying nanograms and milliliters by 1 000 gives 34 µg of $C_{29}H_{60}$ per liter of rainwater:

$$\frac{34 \text{ ng } \text{C}_{29}\text{H}_{60}}{\text{mE}} \left(\frac{1\ 000 \text{ mE}/\text{L}}{1\ 000 \text{ ng}/\mu\text{g}}\right) = \frac{34\ \mu\text{g}\ \text{C}_{29}\text{H}_{60}}{\text{L}}$$

The molecular mass of $C_{29}H_{60}$ is $29 \times 12.011 + 60 \times 1.008 = 408.8$ g/mol, so the molarity is

Molarity of C₂₉H₆₀ in rainwater =
$$\frac{34 \times 10^{-6} \text{ g/L}}{408.8 \text{ g/mol}} = 8.3 \times 10^{-8} \text{ M}$$

An appropriate prefix from Table 1-3 would be nano (n), which is a multiple of 10^{-9} :

$$8.3 \times 10^{-8} \,\mathrm{M}\left(\frac{1 \,\mathrm{nM}}{10^{-9} \,\mathrm{M}}\right) = 83 \,\mathrm{nM}$$

EXAMPLE Converting Parts per Billion into Molarity

Normal alkanes are hydrocarbons with the formula C_nH_{2n+2} . Plants selectively synthesize alkanes with an odd number of carbon atoms. The concentration of $C_{29}H_{60}$ in summer rainwater collected in Hannover, Germany, is 34 ppb. Find the molarity of $C_{29}H_{60}$ and express the answer with a prefix from Table 1-3.

Solution A concentration of 34 ppb means there are 34 ng of $C_{29}H_{60}$ per gram of rainwater, which is nearly the same as 34 ng/mL because the density of rainwater is close to 1.00 g/mL. To find the molarity, we need to know how many grams of $C_{29}H_{60}$ are contained in a liter. Multiplying nanograms and milliliters by 1 000 gives 34 µg of $C_{29}H_{60}$ per liter of rainwater:

$$\frac{34 \text{ ng } \text{C}_{29}\text{H}_{60}}{\text{mE}} \left(\frac{1\ 000 \text{ mE}/\text{L}}{1\ 000 \text{ ng}/\mu\text{g}} \right) = \frac{34\ \mu\text{g}\ \text{C}_{29}\text{H}_{60}}{\text{L}}$$

The molecular mass of $C_{29}H_{60}$ is $29 \times 12.011 + 60 \times 1.008 = 408.8$ g/mol, so the molarity is

Molarity of C₂₉H₆₀ in rainwater =
$$\frac{34 \times 10^{-6} \text{ g/L}}{408.8 \text{ g/mol}} = 8.3 \times 10^{-8} \text{ M}$$

An appropriate prefix from Table 1-3 would be nano (n), which is a multiple of 10^{-9} :

$$8.3 \times 10^{-8} \,\mathrm{M}\left(\frac{1 \,\mathrm{nM}}{10^{-9} \,\mathrm{M}}\right) = 83 \,\mathrm{nM}$$

• To calculate quantities of reagents needed to prepare solutions, use the relation

$$(\mathsf{M}_{conc})(V_{conc}) = (\mathsf{M}_{dil})(V_{dil})$$

 Equates moles of reagent removed from a stock solution to moles delivered into a new solution.

- How many moles of CuCl₂·5H₂O are needed to make 500 mL of a solution that is 1 000.0 ppm in Cu?
 - **grams** of $CuCl_2 \cdot 5H_2O$?
 - milliliters of 10 000 ppm CuCl₂·5H₂O solution?

Figure 1-4

500-mL mark

TC 20°C 500 m

- How many grams of CuCl₂·5H₂O are needed to make 500 mL of a solution that is 1 000 ppm in Cu? (MM of CuCl₂·5H₂O is 224.53 g/mol)
- First calculate the grams of Cu required

 (500-mL) × (1000 µg/mL) = 5.0 × 10⁵ µg Cu
 5.0 × 10⁵ µg Cu = (5.0 × 10⁵)(10⁻⁶)g Cu
 - -5.0×10^{-1} g Cu

$$(5.0 \text{ x } 10^{-1} \text{ g Cu}) \times \left(\frac{224.53 \text{ g CuCl}_2 \cdot 5H_2 \text{ O} / \text{ mol}}{63.546 \text{ g Cu} / \text{mol}}\right) = 1.76_7 \text{ g CuCl}_2 \cdot 5H_2 \text{ O}$$

500-mL mark

Figure 1-4

- How many milliliters of CuCl₂·5H₂O are needed to make 500 mL of a solution that is 1 000.0 ppm in Cu?
- moles of $CuCl_2 \cdot 5H_2O$ solution? $(M_{conc})(V_{conc}) = (M_{dil})(V_{dil})$ $(10\ 000\ ppm)(V_{conc}) = (1\ 000\ ppm)(500\ mL)$ $V_{conc} = (1\ 000\ ppm)(500\ mL) / (10\ 000\ ppm)$ $V_{conc} = 50\ mL$

Place 50 mL of 10 000 ppm CuCl₂ stock solution in the 500 mL flask and fill to the 500 mL mark!

 How many milliliters of concentrated HCI are needed to make 500 mL of a solution that is 0.250 M in HCI?

 $(M_{conc})(V_{conc}) = (M_{dil})(V_{dil})$

• Need to know molarity of concentrated HCI.

Figure 1-4

 How many milliliters of concentrated HCI are needed to make 500 mL of a solution that is 0.250 M in HCI?

 $M_{\text{conc. HCI}} = ?$

$$(\mathsf{M}_{conc})(V_{conc}) = (\mathsf{M}_{dil})(V_{dil})$$

Molarity of the Conc. HCI Solution

$$c = 37.2\% = 37.2 \text{ gHCI} / 100 \text{ g}_{soln}$$

MM = 36.46 g/mol $\rho = 1.188 \text{ g/cm}^3$

 How many milliliters of concentrated HCI are needed to make 500 mL of a solution that is 0.250 M in HCI?

 $M_{\text{conc. HCI}} = 12.1 \text{ M}$

 $(M_{conc})(V_{conc}) = (M_{dil})(V_{dil})$ (12.1M)(V_{conc}) = (0.250 M)(500 mL) $V_{conc} = (0.250 \text{ M})(500 \text{ mL} / (12.1 \text{ M}))$ $V_{conc} = 10.3_3 \text{ mL}$

Stoichiometry

- Use stoichiometry relationships to calculate required masses or volumes of reagents for chemical reactions.
- From the mass of product of a reaction, you should be able to compute how much reactant was consumed.

Stoichiometry

Iron from a dietary supplement tablet can be measured gravimetrically by dissolving the tablet and then converting the dissolved iron into solid Fe_2O_3 . The mass of Fe_2O_3 tells us the mass of iron in the original tablet.

Here are the steps in the procedure:

Step 1 Tablets containing iron(II) fumarate ($Fe^{2+}C_4H_2O_4^{2-}$) and inert binder are mixed with 150 mL of 0.100 M HCl to dissolve the Fe^{2+} . The mixture is filtered to remove insoluble binder.

Step 2 Iron(II) in the clear liquid is oxidized to iron(III) with excess hydrogen peroxide:

$2Fe^{2+}$	+	H_2O_2	+	$2H^+$	\rightarrow	2Fe ³⁺	+	$2H_2O$	(1-7)
Iron(II)	Hydrogen peroxide			Iron(III)					
(ferrous ion)		FM 34.01		(ferric ion)					

Step 3 Ammonium hydroxide is added to precipitate hydrous iron(III) oxide, which is a gel. The gel is filtered and heated in a furnace to convert it to pure solid Fe_2O_3 .

$$Fe^{3+} + 3OH^{-} + (x-1)H_2O \longrightarrow FeOOH \cdot xH_2O(s) \xrightarrow{900^{\circ}C} Fe_2O_3(s)$$
(1-8)
Hydroxide Hydrous iron(III) oxide Iron(III) oxide FM 159.69

Stoichiometry

EXAMPLE How Many Tablets Should We Analyze?

In a gravimetric analysis, we need enough product to weigh accurately. Each tablet provides ~15 mg of iron. How many tablets should we analyze to provide 0.25 g of Fe₂O₃ product?

Solution We can answer the question if we know how many grams of iron are in 0.25 g of Fe_2O_3 . The formula mass of Fe_2O_3 is 159.69 g/mol, so 0.25 g is equal to

mol Fe₂O₃ =
$$\frac{0.25 \text{ g}}{159.69 \text{ g/mol}} = 1.6 \times 10^{-3} \text{ mol}$$

Each mol of Fe₂O₃ has 2 mol of Fe, so 0.25 g of Fe₂O₃ contains

$$1.6 \times 10^{-3} \text{ mol-Fe}_2 \overline{O_3} \times \frac{2 \text{ mol Fe}}{1 \text{ mol-Fe}_2 \overline{O_3}} = 3.2 \times 10^{-3} \text{ mol Fe}$$

The mass of Fe is

$$3.2 \times 10^{-3} \text{ mol-Fe} \times \frac{55.845 \text{ g Fe}}{\text{mol-Fe}} = 0.18 \text{ g Fe}$$

If each tablet contains 15 mg Fe, the number of tablets required is

Number of tablets =
$$\frac{0.18 \text{ g-Fe}}{0.015 \text{ g-Fe/tablet}} = 12 \text{ tablets}$$

- The **limiting reagent** in a chemical reaction is the one that is consumed first.
- Once the limiting reagent is gone, the reaction ceases.

Example: For the reaction: A + 2B \rightarrow P 0.751 moles of A are mixed with 1.43 moles of B.

• What is the limiting reagent and how much excess reagent remains unreacted?

Solution:

	А	+	2B	\rightarrow	Ρ	
I.	0.751		1.43		0	
F.	?		?			

If A is the L.R., how much B is required to completely consume A? $0.751 \mod A \times \left(\frac{2 \mod B}{1 \mod A}\right) = 1.502 \mod B$ required

However, we only have 1.43 mol B, so B must be the L.R.

If B is the L.R., how much is required to completely consume A?

0.1.43 mol B×
$$\left(\frac{1 \mod A}{2 \mod B}\right)$$
=**0.715 mol A** react withB.

So, 0.751 mol A - 0.715 mol A = 0.036 mol A remain after the reaction is complete. All of B is consumed.

EXAMPLE Limiting Reagent

Reaction 1-9 requires one mole of oxalate for each mole of calcium.

$$Ca^{2+} + C_2O_4^{2-} \rightarrow Ca(C_2O_4) \cdot H_2O(s)$$
Oxalate Calcium oxalate (1-9)

If you mix 1.00 g of $CaCl_2$ (FM 110.98) with 1.15 g of $Na_2C_2O_4$ (FM 134.00) in water, which is the limiting reagent? What fraction of the nonlimiting reagent is left over?

Solution The available moles of each reagent are

$$\frac{1.00 \text{ g CaCl}_2}{110.98 \text{ g/mol}} = 9.01 \text{ mmol Ca}^{2+} \qquad \frac{1.15 \text{ g Na}_2\text{C}_2\text{O}_4}{134.00 \text{ g/mol}} = 8.58 \text{ mmol C}_2\text{O}_4^{2-}$$

The reaction requires 1 mol Ca²⁺ for 1 mol C₂O₄²⁻, so oxalate will be used up first. The Ca²⁺ remaining is 9.01 - 8.58 = 0.43 mmol. The fraction of unreacted Ca²⁺ is (0.43 mmol/9.01 mmol) = 4.8%

TEST YOURSELF The reaction $5H_2C_2O_4 + 2MnO_4^- + 6H^+ \rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O$ requires 5 mol $H_2C_2O_4$ for 2 mol MnO_4^- . If you mix 1.15 g Na₂C₂O₄ (FM 134.00) with 0.60 g KMnO₄ (FM 158.03) and excess aqueous acid, which reactant is limiting? How much CO₂ is produced?