Chapter 1 Chemical Measurements

Overview

1-1 SI Units
1-2 Chemical Concentrations
1-3 Preparing Solutions
1-4 Stoichiometry Calculations for Gravimetric Analysis

SI Units

SI base units include the following:

- meter (m)
- kilogram (kg)
- second (s)
- ampere (A)
- kelvin (K)
- mole (mol)

Derived SI Units

Other quantities can be derived in terms of base SI units. See Table 1-2.

- force (newton, N), Kg•m / s²
- pressure (pascal, Pa), $\mathrm{N} / \mathrm{m}^{2}$
- energy (joule, J), N•m

Prefixes

TABLE 1-3 Prefixes

Prefix	Symbol	Factor	Prefix	Symbol
yotta Y	10^{24} deci		Factor	
zetta Z	10^{21} centi		d	10^{-1}
exa E	10^{18} milli		c	10^{-2}
peta P	10^{15} micro		m	10^{-3}
tera T	10^{12} nano		$\mu 10$	-6
giga G	10^{9} pico		n	10^{-9}
mega M	10^{6} femto	f	p	10^{-12}
kilo k	10^{3} atto			10^{-15}
hecto h	10^{2} zepto		a	10^{-18}
deca da	10^{1} yocto		z	10^{-21}

Table 1.3
Memorize these prefixes with their abbreviations and powers of ten.

Using Prefixes in Calculations

- In calculations, units should be carried along with the numbers.
- Prefixes such as kilo- and milli- are used to denote multiples of units.
- Prefixes can be used to simplify conversions between units.

Example:

Express 19.3 mPa in terms of atm
19.3 mPa can be written as $19.3 \times 10^{-3} \mathrm{~Pa}$

$$
19.3 \times 10^{-3} \mathrm{~Pa} \times \frac{1.00 \mathrm{~atm}}{101325 \mathrm{~Pa}}=1.90 \times 10^{-7} \mathrm{~atm}
$$

Concentrations

- Molarity (moles of solute per liter of solution), M
- Molality (moles of solute per kilogram of solvent), m
- Formal concentration (formula units per liter), F
- Percent composition (w/w, v/v or w/v), \%
- Parts per million, ppm
- Parts per billion, ppb

\% Composition (w/w or v/v)

$$
\text { Weight percent }=\frac{\text { mass of solute }}{\text { mass of total solution or mixture }} \times 100
$$

Volume percent $=\frac{\text { volume of solute }}{\text { volume of total solution }} \times 100$

95\% (w/w) ethanol contains 95 g of ethanol for every 100 g of solution.

ppm, Parts per Million

$$
\mathrm{ppm}=\frac{\text { mass of substance }}{\text { mass of sample }} \times 10^{6}
$$

$$
\mathrm{ppb}=\frac{\text { mass of substance }}{\text { mass of sample }} \times 10^{9}
$$

- Shortcut: ppm is also mg / L or $\mu \mathrm{g} / \mathrm{mL}$ if the density of the solution is $1.0 \mathrm{~g} / \mathrm{mL}$.
- An aqueous solution that is 1000 ppm in Cu contains 1000 mg Cu per liter of solution.
- It also contains $1000 \mu \mathrm{~g}$ per mL of solution.

ppm, Parts per Million

EXAMPLE Converting Parts per Billion into Molarity

Normal alkanes are hydrocarbons with the formula $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$. Plants selectively synthesize alkanes with an odd number of carbon atoms. The concentration of $\mathrm{C}_{29} \mathrm{H}_{60}$ in summer rainwater collected in Hannover, Germany, is 34 ppb . Find the molarity of $\mathrm{C}_{29} \mathrm{H}_{60}$ and express the answer with a prefix from Table 1-3.

Solution A concentration of 34 ppb means there are 34 ng of $\mathrm{C}_{29} \mathrm{H}_{60}$ per gram of rainwater, which is nearly the same as $34 \mathrm{ng} / \mathrm{mL}$ because the density of rainwater is close to $1.00 \mathrm{~g} / \mathrm{mL}$. To find the molarity, we need to know how many grams of $\mathrm{C}_{29} \mathrm{H}_{60}$ are contained in a liter. Multiplying nanograms and milliliters by 1000 gives $34 \mu \mathrm{~g}$ of $\mathrm{C}_{29} \mathrm{H}_{60}$ per liter of rainwater:

$$
\frac{34 \mathrm{mg} \mathrm{C}}{29} \mathrm{H}_{60}\left(\frac{1000 \mathrm{m匕} / \mathrm{L}}{1000 \mathrm{mg} / \mu \mathrm{g}}\right)=\frac{34 \mu \mathrm{~g} \mathrm{C}_{29} \mathrm{H}_{60}}{\mathrm{~L}}
$$

The molecular mass of $\mathrm{C}_{29} \mathrm{H}_{60}$ is $29 \times 12.011+60 \times 1.008=408.8 \mathrm{~g} / \mathrm{mol}$, so the molarity is

$$
\text { Molarity of } \mathrm{C}_{29} \mathrm{H}_{60} \text { in rainwater }=\frac{34 \times 10^{-6} \mathrm{~g} / \mathrm{L}}{408.8 \mathrm{~g} / \mathrm{mol}}=8.3 \times 10^{-8} \mathrm{M}
$$

An appropriate prefix from Table 1-3 would be nano (n), which is a multiple of 10^{-9} :

$$
8.3 \times 10^{-8} \mathrm{~A}\left(\frac{1 \mathrm{nM}}{10^{-9} \mathrm{M}}\right)=83 \mathrm{nM}
$$

ppm, Parts per Million

EXAMPLE Converting Parts per Billion into Molarity

Normal alkanes are hydrocarbons with the formula $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$. Plants selectively synthesize alkanes with an odd number of carbon atoms. The concentration of $\mathrm{C}_{29} \mathrm{H}_{60}$ in summer rainwater collected in Hannover, Germany, is 34 ppb . Find the molarity of $\mathrm{C}_{29} \mathrm{H}_{60}$ and express the answer with a prefix from Table 1-3.

Solution A concentration of 34 ppb means there are 34 ng of $\mathrm{C}_{29} \mathrm{H}_{60}$ per gram of rainwater, which is nearly the same as $34 \mathrm{ng} / \mathrm{mL}$ because the density of rainwater is close to $1.00 \mathrm{~g} / \mathrm{mL}$. To find the molarity, we need to know how many grams of $\mathrm{C}_{29} \mathrm{H}_{60}$ are contained in a liter. Multiplying nanograms and milliliters by 1000 gives $34 \mu \mathrm{~g}$ of $\mathrm{C}_{29} \mathrm{H}_{60}$ per liter of rainwater:

$$
\frac{34 \mathrm{mg} \mathrm{C}}{29} \mathrm{H}_{60}\left(\frac{1000 \mathrm{~mL} / \mathrm{L}}{1000 \mathrm{mg} / \mu \mathrm{g}}\right)=\frac{34 \mu \mathrm{~g} \mathrm{C}_{29} \mathrm{H}_{60}}{\mathrm{~L}}
$$

ppm, Parts per Million

The molecular mass of $\mathrm{C}_{29} \mathrm{H}_{60}$ is $29 \times 12.011+60 \times 1.008=408.8 \mathrm{~g} / \mathrm{mol}$, so the molarity is

$$
\text { Molarity of } \mathrm{C}_{29} \mathrm{H}_{60} \text { in rainwater }=\frac{34 \times 10^{-6} \mathrm{~g} / \mathrm{L}}{408.8 \mathrm{~g} / \mathrm{mol}}=8.3 \times 10^{-8} \mathrm{M}
$$

An appropriate prefix from Table 1-3 would be nano (n), which is a multiple of 10^{-9} :

$$
8.3 \times 10^{-8} \mathrm{~A}\left(\frac{1 \mathrm{nM}}{10^{-9} \mathrm{M}}\right)=83 \mathrm{nM}
$$

Making Solutions

- To calculate quantities of reagents needed to prepare solutions, use the relation

$$
\left(\mathrm{M}_{\text {conc }}\right)\left(V_{\text {conc }}\right)=\left(\mathrm{M}_{\text {dil }}\right)\left(V_{\text {dil }}\right)
$$

- Equates moles of reagent removed from a stock solution to moles delivered into a new solution.

Making Solutions

- How many moles of $\mathrm{CuCl}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ are needed to make 500 mL of a solution that is 1000.0 ppm in Cu?
- grams of $\mathrm{CuCl}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$?
- milliliters of 10000 ppm $\mathrm{CuCl}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ solution?

Figure 1-4

Making Solutions

- How many grams of $\mathrm{CuCl}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ are needed to make 500 mL of a solution that is 1000 ppm in Cu ? (MM of $\mathrm{CuCl}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is $224.53 \mathrm{~g} / \mathrm{mol}$)
- First calculate the grams of Cu required $-(500-\mathrm{mL}) \times(1000 \mu \mathrm{~g} / \mathrm{mL})=5.0 \times 10^{5} \mu \mathrm{~g} \mathrm{Cu}$ $-5.0 \times 10^{5} \mu \mathrm{~g} \mathrm{Cu}=\left(5.0 \times 10^{5}\right)\left(10^{-6}\right) \mathrm{g} \mathrm{Cu}$ $-5.0 \times 10^{-1} \mathrm{~g} \mathrm{Cu}$
$\left(5.0 \times 10^{-1} \mathrm{~g} \mathrm{Cu}\right) \times\left(\frac{224.53 \mathrm{~g} \mathrm{CuCl}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O} / \mathrm{mol}}{63.546 \mathrm{~g} \mathrm{Cu} / \mathrm{mol}}\right)=1.76_{7} \mathrm{~g} \mathrm{CuCl}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

Making Solutions

- How many milliliters of $\mathrm{CuCl}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ are needed to make 500 mL of a solution that is 1000.0 ppm in Cu?
- moles of $\mathrm{CuCl}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ solution?
$\left(\mathrm{M}_{\text {conc }}\right)\left(V_{\text {conc }}\right)=\left(\mathrm{M}_{\text {dil }}\right)\left(V_{\text {dil }}\right)$
$(10000 \mathrm{ppm})\left(V_{\text {conc }}\right)=(1000 \mathrm{ppm})(500 \mathrm{~mL})$
$V_{\text {conc }}=(1000 \mathrm{ppm})(500 \mathrm{~mL}) /(10000 \mathrm{ppm})$
$V_{\text {conc }}=50 \mathrm{~mL}$
Figure 1-4
Place 50 mL of 10000 ppm CuCl 2 stock solution in the 500 mL flask and fill to the 500 mL mark!

Making Solutions

- How many milliliters of concentrated HCl are needed to make 500 mL of a solution that is 0.250 M in HCl ?

$$
\left(\mathrm{M}_{\text {conc }}\right)\left(V_{\text {conc }}\right)=\left(\mathrm{M}_{\text {dil }}\right)\left(V_{\text {dil }}\right)
$$

- Need to know molarity of concentrated HCl .

Figure 1-4

Concentrated HCl is
$37.2 \%(w / w) \mathrm{HCl}$ and has
a density of $1.188 \mathrm{~g} / \mathrm{cm}^{3}$

Making Solutions

- How many milliliters of concentrated HCl are needed to make 500 mL of a solution that is 0.250 M in HCl ?

$$
\mathrm{M}_{\text {conc. } \mathrm{HCl}}=?
$$

Molarity of the Conc. HCI Solution

$$
\left.\begin{array}{c}
\mathrm{C}=37.2 \%=37.2 \mathrm{gHCl} / 100 \mathrm{~g}_{\text {soln }} \\
\mathrm{MM}=36.46 \mathrm{~g} / \mathrm{mol} \\
\rho=1.188 \mathrm{~g} / \mathrm{cm}^{3}
\end{array}\right\} \begin{aligned}
& \text { desired un } \\
& \frac{\mathrm{mol} \mathrm{HCl}}{\mathrm{~L} \text { soln }}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{37.2 \mathrm{~g} \mathrm{HCl}}{100 \mathrm{~g}_{\mathrm{lln}}} \times \frac{1 \mathrm{~mol} \mathrm{HCl}^{36.46 \mathrm{~g} \mathrm{HCl}} \times \frac{1.18 \mathrm{~g}_{\text {soln }}}{1.000 \mathrm{~cm}_{\text {soln }}^{3}} \times \frac{1000 \mathrm{~cm}_{\mathrm{dn}}^{3}}{1 \mathrm{~L}}}{} \\
&=12.1 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

Making Solutions

- How many milliliters of concentrated HCl are needed to make 500 mL of a solution that is 0.250 M in HCl ?

$$
\mathrm{M}_{\text {conc. } \mathrm{HCl}}=12.1 \mathrm{M}
$$

$$
\begin{aligned}
& \left(\mathrm{M}_{\text {conc }}\right)\left(V_{\text {conc }}\right)=\left(\mathrm{M}_{\text {di }}\right)\left(V_{\text {di }}\right) \\
& (12.1 \mathrm{M})\left(V_{\text {conc }}\right)=(0.250 \mathrm{M})(500 \mathrm{~mL}) \\
& V_{\text {conc }}=(0.250 \mathrm{M})(500 \mathrm{~mL} /(12.1 \mathrm{M}) \\
& V_{\text {conc }}=10.3_{3} \mathrm{~mL}
\end{aligned}
$$

Stoichiometry

- Use stoichiometry relationships to calculate required masses or volumes of reagents for chemical reactions.
- From the mass of product of a reaction, you should be able to compute how much reactant was consumed.

Stoichiometry

Iron from a dietary supplement tablet can be measured gravimetrically by dissolving the tablet and then converting the dissolved iron into solid $\mathrm{Fe}_{2} \mathrm{O}_{3}$. The mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ tells us the mass of iron in the original tablet.

Here are the steps in the procedure:
Step 1 Tablets containing iron(II) fumarate $\left(\mathrm{Fe}^{2+} \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}^{2-}\right)$ and inert binder are mixed with 150 mL of 0.100 M HCl to dissolve the Fe^{2+}. The mixture is filtered to remove insoluble binder.
Step 2 Iron(II) in the clear liquid is oxidized to iron(III) with excess hydrogen peroxide:

$2 \mathrm{Fe}^{2+}$	+	$\mathrm{H}_{2} \mathrm{O}_{2}$	+	$2 \mathrm{H}^{+}$	\rightarrow	$2 \mathrm{Fe}^{3+}$	+	$2 \mathrm{H}_{2} \mathrm{O}$
Iron(II) (ferrous ion)		ogen pe FM 34.0				Iron(III) (ferric ion)		

(ferrous ion) FM 34.01 (ferric ion)
Step 3 Ammonium hydroxide is added to precipitate hydrous iron(III) oxide, which is a gel. The gel is filtered and heated in a furnace to convert it to pure solid $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

$$
\begin{array}{cc}
\mathrm{Fe}^{3+}+3 \mathrm{OH}^{-}+(x-1) \mathrm{H}_{2} \mathrm{O} \longrightarrow & \mathrm{FeOOH} \cdot x \mathrm{H}_{2} \mathrm{O}(s) \xrightarrow{900^{\circ} \mathrm{C}} \mathrm{Fe}_{2} \mathrm{O}_{3}(s) \tag{1-8}\\
& \text { Hydrous iron(III) oxide } \\
& \text { Iron(III) oxide } \\
& \text { FM } 159.69
\end{array}
$$

Stoichiometry

EXAMPLE How Many Tablets Should We Analyze?

In a gravimetric analysis, we need enough product to weigh accurately. Each tablet provides $\sim 15 \mathrm{mg}$ of iron. How many tablets should we analyze to provide 0.25 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ product?

Solution We can answer the question if we know how many grams of iron are in 0.25 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$. The formula mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is $159.69 \mathrm{~g} / \mathrm{mol}$, so 0.25 g is equal to

$$
\mathrm{mol} \mathrm{Fe} \mathrm{O}_{3}=\frac{0.25 \mathrm{~g}}{159.69 \mathrm{~g} / \mathrm{mol}}=1.6 \times 10^{-3} \mathrm{~mol}
$$

Each mol of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ has 2 mol of Fe , so 0.25 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ contains

$$
1.6 \times 10^{-3} \mathrm{molFe}_{2} \mathrm{O}_{3} \times \frac{2 \mathrm{~mol} \mathrm{Fe}}{1 \mathrm{molFe}_{2} \mathrm{O}_{3}}=3.2 \times 10^{-3} \mathrm{~mol} \mathrm{Fe}
$$

The mass of Fe is

$$
3.2 \times 10^{-3} \mathrm{melFe} \times \frac{55.845 \mathrm{~g} \mathrm{Fe}}{\mathrm{melFe}}=0.18 \mathrm{~g} \mathrm{Fe}
$$

If each tablet contains 15 mg Fe , the number of tablets required is

$$
\text { Number of tablets }=\frac{0.18 \mathrm{~g} \text { Fe }}{0.015 \mathrm{~g} \text { Fe } / \text { tablet }}=12 \text { tablets }
$$

Limiting Reagent

- The limiting reagent in a chemical reaction is the one that is consumed first.
- Once the limiting reagent is gone, the reaction ceases.

Example: For the reaction: $\mathrm{A}+2 \mathrm{~B} \rightarrow \mathrm{P}$
0.751 moles of A are mixed with 1.43 moles of B.

- What is the limiting reagent and how much excess reagent remains unreacted?

Limiting Reagent

Solution:

If A is the L.R., how much B is required to completely consume A ?
$0.751 \mathrm{~mol} \mathrm{~A} \times\left(\frac{2 \mathrm{~mol} \mathrm{~B}}{1 \mathrm{~mol} \mathrm{~A}}\right)=\mathbf{1 . 5 0 2} \mathbf{~ m o l ~ B}$ required
However, we only have 1.43 mol B, so B must be the L.R.

Limiting Reagent

Solution:

Final

$$
0.1 .43 \mathrm{~mol} \mathrm{~B} \times\left(\frac{1 \mathrm{~mol} \mathrm{~A}}{2 \mathrm{~mol} \mathrm{~B}}\right)=0.715 \mathrm{~mol} \mathrm{~A} \text { react withB. }
$$

So, $0.751 \mathrm{~mol} A-0.715 \mathrm{~mol} A=0.036 \mathrm{~mol}$ A remain after the reaction is complete. All of B is consumed.

Limiting Reagent

EXAMPLE Limiting Reagent

Reaction 1-9 requires one mole of oxalate for each mole of calcium.

$$
\begin{equation*}
\mathrm{Ca}^{2+}+\underset{\text { Oxalate }}{\mathrm{C}_{2} \mathrm{O}_{4}^{2-}} \rightarrow \underset{\text { Calcium oxalate }}{\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})} \tag{1-9}
\end{equation*}
$$

If you mix 1.00 g of CaCl_{2} (FM 110.98) with 1.15 g of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ (FM 134.00) in water, which is the limiting reagent? What fraction of the nonlimiting reagent is left over?

Solution The available moles of each reagent are

$$
\frac{1.00 \mathrm{~g} \mathrm{CaCl}_{2}}{110.98 \mathrm{~g} / \mathrm{mol}}=9.01 \mathrm{mmol} \mathrm{Ca}^{2+} \quad \frac{1.15 \mathrm{~g} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}}{134.00 \mathrm{~g} / \mathrm{mol}}=8.58 \mathrm{mmol} \mathrm{C}_{2} \mathrm{O}_{4}^{2-}
$$

The reaction requires $1 \mathrm{~mol} \mathrm{Ca}^{2+}$ for $1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{O}_{4}^{2-}$, so oxalate will be used up first. The Ca^{2+} remaining is $9.01-8.58=0.43 \mathrm{mmol}$. The fraction of unreacted Ca^{2+} is $(0.43 \mathrm{mmol} / 9.01 \mathrm{mmol})=4.8 \%$

TEST YOURSELF The reaction $5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+} \rightarrow 10 \mathrm{CO}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$ requires $5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ for $2 \mathrm{~mol} \mathrm{MnO}_{4}^{-}$. If you mix $1.15 \mathrm{~g} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ (FM 134.00) with $0.60 \mathrm{~g} \mathrm{KMnO}_{4}$ (FM 158.03) and excess aqueous acid, which reactant is limiting? How much CO_{2} is produced?

